dc.contributor.author
Hess, Philipp
dc.contributor.author
Boers, Niklas
dc.date.accessioned
2022-03-23T12:58:23Z
dc.date.available
2022-03-23T12:58:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34480
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-34198
dc.description.abstract
The accurate prediction of rainfall, and in particular of the heaviest rainfall events, remains challenging for numerical weather prediction (NWP) models. This may be due to subgrid-scale parameterizations of processes that play a crucial role in the multi-scale dynamics generating rainfall, as well as the strongly intermittent nature and the highly skewed, non-Gaussian distribution of rainfall. Here we show that a U-Net-based deep neural network can learn heavy rainfall events from a NWP ensemble. A frequency-based weighting of the loss function is proposed to enable the learning of heavy rainfall events in the distributions' tails. We apply our framework in a post-processing step to correct for errors in the model-predicted rainfall. Our method yields a much more accurate representation of relative rainfall frequencies and improves the forecast skill of heavy rainfall events by factors ranging from two to above six, depending on the event magnitude.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
prediction of rainfall
en
dc.subject
modeling rainfall
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
Deep Learning for Improving Numerical Weather Prediction of Heavy Rainfall
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2021MS002765
dcterms.bibliographicCitation.doi
10.1029/2021MS002765
dcterms.bibliographicCitation.journaltitle
Journal of Advances in Modeling Earth Systems
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2021MS002765
refubium.affiliation
Mathematik und Informatik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1942-2466