dc.contributor.author
Hering, Max
dc.contributor.author
Yan, Han
dc.contributor.author
Reuther, Johannes
dc.date.accessioned
2022-08-04T12:49:34Z
dc.date.available
2022-08-04T12:49:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/34266
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33984
dc.description.abstract
Fractons are topological quasiparticles with limited mobility. While there exist a variety of models hosting these excitations, typical fracton systems require rather complicated many-particle interactions. Here, we discuss fracton behavior in the more common physical setting of classical kagome spin models with frustrated two-body interactions only. We investigate systems with different types of elementary spin degrees of freedom (three-state Potts, XY, and Heisenberg spins) which all exhibit characteristic subsystem symmetries and fractonlike excitations. The mobility constraints of isolated fractons and bound fracton pairs in the three-state Potts model are, however, strikingly different compared to the known type-I or type-II fracton models. One may still explain these properties in terms of type-I fracton behavior and construct an effective low-energy tensor gauge theory when considering the system as a two-dimensional cut of a three-dimensional cubic lattice model. Our extensive classical Monte Carlo simulations further indicate a crossover into a low-temperature glassy phase where the system gets trapped in metastable fracton states. Moving on to XY spins, we find that in addition to fractons the system hosts fractional vortex excitations. As a result of the restricted mobility of both types of defects, our classical Monte Carlo simulations do not indicate a Kosterlitz-Thouless transition but again show a crossover into a glassy low-temperature regime. Finally, the energy barriers associated with fractons vanish in the case of Heisenberg spins, such that defect states may continuously decay into a ground state. These decays, however, exhibit a power-law relaxation behavior which leads to slow equilibration dynamics at low temperatures.
en
dc.format.extent
21 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Exotic phases of matter
en
dc.subject
Fractionalization
en
dc.subject
Quasiparticles & collective excitations
en
dc.subject
Antiferromagnets
en
dc.subject
Kagome lattice
en
dc.subject
Monte Carlo methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Fracton excitations in classical frustrated kagome spin models
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
85097
dcterms.bibliographicCitation.articlenumber
064406
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.104.064406
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
104
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevB.104.064406
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#free
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969