dc.contributor.author
Wolf, Elias
dc.date.accessioned
2022-02-08T08:02:20Z
dc.date.available
2022-02-08T08:02:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33910
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33629
dc.description.abstract
This paper proposes a Skewed Stochastic Volatility (SSV) model to model time varying,
asymmetric forecast distributions to estimate Growth at Risk as introduced in
Adrian, Boyarchenko, and Giannone’s (2019) seminal paper ”Vulnerable Growth”.
In contrary to their semi-parametric approach, the SSV model enables researchers
to capture the evolution of the densities parametrically to conduct statistical tests
and compare different models. The SSV-model forms a non-linear, non-gaussian
state space model that can be estimated using Particle Filtering and MCMC algorithms.
To remedy drawbacks of standard Bootstrap Particle Filters, I modify the
Tempered Particle Filter of Herbst and Schorfheide’s (2019) to account for stochastic
volatility and asymmetric measurement densities. Estimating the model based
on US data yields conditional forecast densities that closely resemble the findings by
Adrian et al. (2019). Exploiting the advantages of the proposed model, I find that
the estimated parameter values for the effect of financial conditions on the variance
and skewness of the conditional distributions are statistically significant and in line
with the intuition of the results found in the existing literature.
en
dc.format.extent
21 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
growth at risk
en
dc.subject
macro finance
en
dc.subject
Bayesian econometrics
en
dc.subject
particle filters
en
dc.subject.ddc
300 Sozialwissenschaften::330 Wirtschaft::339 Makroökonomie und verwandte Themen
dc.title
Estimating growth at risk with skewed stochastic volatility models
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-33910-5
refubium.affiliation
Wirtschaftswissenschaft
refubium.resourceType.isindependentpub
yes
refubium.series.issueNumber
2022,2 : Economics
refubium.series.name
Discussion paper / School of Business & Economics
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access