dc.contributor.author
Maier, Corinna
dc.contributor.author
Wiljes, Jana
dc.contributor.author
Hartung, Niklas
dc.contributor.author
Kloft, Charlotte
dc.contributor.author
Huisinga, Wilhelm
dc.date.accessioned
2022-03-01T09:34:04Z
dc.date.available
2022-03-01T09:34:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33850
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33569
dc.description.abstract
Model-informed precision dosing (MIPD) is a quantitative dosing framework that combines prior knowledge on the drug-disease-patient system with patient data from therapeutic drug/ biomarker monitoring (TDM) to support individualized dosing in ongoing treatment. Structural models and prior parameter distributions used in MIPD approaches typically build on prior clinical trials that involve only a limited number of patients selected according to some exclusion/inclusion criteria. Compared to the prior clinical trial population, the patient population in clinical practice can be expected to also include altered behavior and/or increased interindividual variability, the extent of which, however, is typically unknown. Here, we address the question of how to adapt and refine models on the level of the model parameters to better reflect this real-world diversity. We propose an approach for continued learning across patients during MIPD using a sequential hierarchical Bayesian framework. The approach builds on two stages to separate the update of the individual patient parameters from updating the population parameters. Consequently, it enables continued learning across hospitals or study centers, because only summary patient data (on the level of model parameters) need to be shared, but no individual TDM data. We illustrate this continued learning approach with neutrophil-guided dosing of paclitaxel. The present study constitutes an important step toward building confidence in MIPD and eventually establishing MIPD increasingly in everyday therapeutic use.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
model-informed precision dosing
en
dc.subject
therapeutic drug/ biomarker monitoring
en
dc.subject
clinical practice
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
A continued learning approach for model-informed precision dosing: Updating models in clinical practice
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/psp4.12745
dcterms.bibliographicCitation.journaltitle
CPT: Pharmacometrics & Systems Pharmacology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
185
dcterms.bibliographicCitation.pageend
198
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1002/psp4.12745
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2163-8306
refubium.resourceType.provider
WoS-Alert