dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Herwig, Susanne
dc.contributor.author
Stein, Julia
dc.contributor.author
Vladimirova, Daria
dc.contributor.author
Adler, Julia Maria
dc.contributor.author
Abdelgawad, Azza
dc.contributor.author
Firsching, Theresa C.
dc.contributor.author
Thoma, Tizia
dc.contributor.author
Sehouli, Jalid
dc.contributor.author
Osterrieder, Klaus
dc.contributor.author
Gruber, Achim D.
dc.contributor.author
Sawitzki, Birgit
dc.contributor.author
Sander, Leif Erik
dc.contributor.author
Cichon, Günter
dc.date.accessioned
2022-01-27T19:47:52Z
dc.date.available
2022-01-27T19:47:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33766
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33486
dc.description.abstract
With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
vaccine genes
en
dc.subject
dwarf hamster
en
dc.subject
animal model
en
dc.subject
adenoviral vectors
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines - A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2290
dcterms.bibliographicCitation.doi
10.3390/v13112290
dcterms.bibliographicCitation.journaltitle
Viruses
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.3390/v13112290
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Virologie
refubium.affiliation.other
Institut für Tierpathologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1999-4915