dc.contributor.author
Schäfer, Michael
dc.contributor.author
Pientka, Sophie
dc.contributor.author
Pfaff, Jonathan
dc.contributor.author
Schwarz, Heiko
dc.contributor.author
Marpe, Detlev
dc.contributor.author
Wiegand, Thomas
dc.date.accessioned
2022-01-10T07:45:42Z
dc.date.available
2022-01-10T07:45:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/33392
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-33113
dc.description.abstract
Deep-learned variational auto-encoders (VAE) have shown remarkable capabilities for lossy image compression. These neural networks typically employ non-linear convolutional layers for finding a compressible representation of the input image. Advanced techniques such as vector quantization, context-adaptive arithmetic coding and variable-rate compression have been implemented in these auto-encoders. Notably, these networks rely on an end-to-end approach, which fundamentally differs from hybrid, block-based video coding systems. Therefore, signal-dependent encoder optimizations have not been thoroughly investigated for VAEs yet. However, rate-distortion optimized encoding heavily determines the compression performance of state-of-the-art video codecs. Designing such optimizations for non-linear, multi-layered networks requires to understand the relationship between the quantization, the bit allocation of the features and the distortion. Therefore, this paper examines the rate-distortion performance of a variable-rate VAE. In particular, one demonstrates that the trained encoder network typically finds features with a near-optimal bit allocation across the channels. Furthermore, one approximates the relationship between distortion and quantization by a higher-order polynomial, whose coefficients can be robustly estimated. Based on these considerations, the authors investigate an encoding algorithm for the Lagrange optimization, which significantly improves the coding efficiency.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Deep image compression
en
dc.subject
variational auto-encoders
en
dc.subject
rate-distortion optimized encoding
en
dc.subject
non-linear transform coding
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Rate-Distortion Optimized Encoding for Deep Image Compression
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1109/OJCAS.2021.3124995
dcterms.bibliographicCitation.journaltitle
IEEE Open Journal of Circuits and Systems
dcterms.bibliographicCitation.pagestart
633
dcterms.bibliographicCitation.pageend
647
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1109/OJCAS.2021.3124995
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2644-1225
refubium.resourceType.provider
WoS-Alert