dc.contributor.author
Ganichkin, Oleg M.
dc.contributor.author
Vancraenenbroeck, Renee
dc.contributor.author
Rosenblum, Gabriel
dc.contributor.author
Hofmann, Hagen
dc.contributor.author
Mikhailov, Alexander S.
dc.contributor.author
Daumke, Oliver
dc.contributor.author
Noel, Jeffrey K.
dc.date.accessioned
2021-11-09T13:56:32Z
dc.date.available
2021-11-09T13:56:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32637
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-32361
dc.description.abstract
Dynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single-molecule Förster resonance energy transfer (smFRET) and found strong nucleotide-dependent conformational preferences. Integrating smFRET with molecular dynamics simulations allowed us to estimate the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemifission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
biomembranes
en
dc.subject
elastic filament
en
dc.subject
Canham–Helfrich
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2101144118
dcterms.bibliographicCitation.doi
10.1073/pnas.2101144118
dcterms.bibliographicCitation.journaltitle
Proceedings of the National Academy of Sciences (PNAS)
dcterms.bibliographicCitation.number
28
dcterms.bibliographicCitation.volume
118
dcterms.bibliographicCitation.url
https://doi.org/10.1073/pnas.2101144118
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1091-6490
refubium.resourceType.provider
WoS-Alert