dc.contributor.author
Bichmann, Leon
dc.contributor.author
Gupta, Shubham
dc.contributor.author
Rosenberger, George
dc.contributor.author
Kuchenbecker, Leon
dc.contributor.author
Sachsenberg, Timo
dc.contributor.author
Ewels, Phil
dc.contributor.author
Alka, Oliver
dc.contributor.author
Pfeuffer, Julianus
dc.contributor.author
Kohlbacher, Oliver
dc.contributor.author
Rost, Hannes
dc.date.accessioned
2021-09-30T12:26:22Z
dc.date.available
2021-09-30T12:26:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/32129
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31857
dc.description.abstract
Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-scale data sets. Here we present DIAproteomics, a multifunctional, automated, high-throughput pipeline implemented in the Nextflow workflow management system that allows one to easily process proteomics and peptidomics DIA data sets on diverse compute infrastructures. The central components are well-established tools such as the OpenSwathWorkflow for the DIA spectral library search and PyProphet for the false discovery rate assessment. In addition, it provides options to generate spectral libraries from existing DDA data and to carry out the retention time and chromatogram alignment. The output includes annotated tables and diagnostic visualizations from the statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. DIAproteomics is well documented open-source software and is available under a permissive license to the scientific community at https://www.openms.de/diaproteomics/.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
data-independent acquisition
en
dc.subject
spectral library generation
en
dc.subject
cloud computing
en
dc.subject
data processing
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
DIAproteomics: A Multifunctional Data Analysis Pipeline for Data-Independent Acquisition Proteomics and Peptidomics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jproteome.1c00123
dcterms.bibliographicCitation.journaltitle
Journal of Proteome Research
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
3758
dcterms.bibliographicCitation.pageend
3766
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jproteome.1c00123
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1535-3907
refubium.resourceType.provider
WoS-Alert