dc.contributor.author
Alcón, Isaac
dc.contributor.author
Calogero, Gaetano
dc.contributor.author
Papior, Nick
dc.contributor.author
Brandbyge, Mads
dc.date.accessioned
2021-10-18T10:55:47Z
dc.date.available
2021-10-18T10:55:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31904
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31636
dc.description.abstract
During the last decade, on-surface fabricated graphene nanoribbons (GNRs) have gathered enormous attention due to their semiconducting π-conjugated nature and atomically precise structure. A significant breakthrough is the recent fabrication of nanoporous graphene (NPG) as a 2D array of laterally bonded GNRs. This covalent integration of GNRs could enable complex electronic functionality at the nanoscale; however, for that, it is crucial to externally control the electronic coupling between GNRs within NPGs, which, to date, has not been possible. Using quantum chemical calculations and large-scale transport simulations, this study demonstrates that such control is enabled in a newly designed quinone-NPG (q-NPG) thanks to its GNRs inter-connections based on electroactive para-benzoquinone units. As a result, the spatial distribution of injected currents in q-NPG may be tuned, with sub-nanometer precision, via the application of external electrostatic gates and electrochemical means. These results thus provide a fundamental strategy to design organic nanodevices with built-in externally tunable electronics and spintronics, which is key for future applications such as bio-chemical nanosensing and carbon nanoelectronics.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
density functional theory
en
dc.subject
electrochemical
en
dc.subject
graphene nanoribbons
en
dc.subject
nanoporous graphene
en
dc.subject
quantum transport
en
dc.subject
spin filtering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Electrochemical Control of Charge Current Flow in Nanoporous Graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2104031
dcterms.bibliographicCitation.doi
10.1002/adfm.202104031
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
40
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202104031
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert