dc.contributor.author
Paffhausen, Benjamin H.
dc.contributor.author
Petrasch, Julian
dc.contributor.author
Wild, Benjamin
dc.contributor.author
Meurers, Thierry
dc.contributor.author
Schülke, Tobias
dc.contributor.author
Polster, Johannes
dc.contributor.author
Fuchs, Inga
dc.contributor.author
Drexler, Helmut
dc.contributor.author
Kuriatnyk, Oleksandra
dc.contributor.author
Menzel, Randolf
dc.date.accessioned
2021-09-09T07:10:11Z
dc.date.available
2021-09-09T07:10:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31901
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31633
dc.description.abstract
Navigating animals combine multiple perceptual faculties, learn during exploration, retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression of their current needs and motivations. Navigation in insects has been linked to a variety of underlying strategies such as path integration, view familiarity, visual beaconing, and goal-directed orientation with respect to previously learned ground structures. Most works, however, study navigation either from a field perspective, analyzing purely behavioral observations, or combine computational models with neurophysiological evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been a popular model in the search for neural correlates of complex behaviors and exhibits extraordinary navigational capabilities. However, the neural basis for bee navigation has not yet been explored under natural conditions. Here, we propose a novel methodology to record from the brain of a copter-mounted honey bee. This way, the animal experiences natural multimodal sensory inputs in a natural environment that is familiar to her. We have developed a miniaturized electrophysiology recording system which is able to record spikes in the presence of time-varying electric noise from the copter's motors and rotors, and devised an experimental procedure to record from mushroom body extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined with a reconstruction of the animal's visual perception and find that the neural activity of MBENs is linked to sharp turns, possibly related to the relative motion of visual features. This method is a significant technological step toward recording brain activity of navigating honey bees under natural conditions. By providing all system specifications in an online repository, we hope to close a methodological gap and stimulate further research informing future computational models of insect navigation.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
honeybee (Apis mellifera L.)
en
dc.subject
neuroethology
en
dc.subject
mushroom body
en
dc.subject
naturalistic condition
en
dc.subject
electrophysiology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
A Flying Platform to Investigate Neuronal Correlates of Navigation in the Honey Bee (Apis mellifera)
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
690571
dcterms.bibliographicCitation.doi
10.3389/fnbeh.2021.690571
dcterms.bibliographicCitation.journaltitle
Frontiers in Behavioral Neuroscience
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.3389/fnbeh.2021.690571
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Biologie
refubium.affiliation.other
Institut für Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1662-5153
refubium.resourceType.provider
WoS-Alert