dc.contributor.author
Kemeth, Felix P.
dc.contributor.author
Fiedler, Bernold
dc.contributor.author
Haugland, Sindre W.
dc.contributor.author
Krischer, Katharina
dc.date.accessioned
2021-08-24T06:15:42Z
dc.date.available
2021-08-24T06:15:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31728
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31459
dc.description.abstract
We reduce the dynamics of an ensemble of mean-coupled Stuart–Landau oscillators close to the synchronized solution. In particular, we map the system onto the center manifold of the Benjamin–Feir instability, the bifurcation destabilizing the synchronized oscillation. Using symmetry arguments, we describe the structure of the dynamics on this center manifold up to cubic order, and derive expressions for its parameters. This allows us to investigate phenomena described by the Stuart–Landau ensemble, such as clustering and cluster singularities, in the lower-dimensional center manifold, providing further insights into the symmetry-broken dynamics of coupled oscillators. We show that cluster singularities in the Stuart–Landau ensemble correspond to vanishing quadratic terms in the center manifold dynamics. In addition, they act as organizing centers for the saddle-node bifurcations creating unbalanced cluster states as well for the transverse bifurcations altering the cluster stability. Furthermore, we show that bistability of different solutions with the same cluster-size distribution can only occur when either cluster contains at least 1/3 of the oscillators, independent of the system parameters.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
globally coupled oscillators
en
dc.subject
center manifold reduction
en
dc.subject
SN-equivariant systems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
2-Cluster fixed-point analysis of mean-coupled Stuart–Landau oscillators in the center manifold
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
025005
dcterms.bibliographicCitation.doi
10.1088/2632-072X/abd0da
dcterms.bibliographicCitation.journaltitle
Journal of Physics: Complexity
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-072X/abd0da
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-072X
refubium.resourceType.provider
WoS-Alert