dc.contributor.author
Yan, Rui
dc.contributor.author
Ma, Tian
dc.contributor.author
Cheng, Menghao
dc.contributor.author
Tao, Xuefeng
dc.contributor.author
Yang, Zhao
dc.contributor.author
Ran, Fen
dc.contributor.author
Li, Shuang
dc.contributor.author
Yin, Bo
dc.contributor.author
Cheng, Chong
dc.contributor.author
Yang, Wei
dc.date.accessioned
2021-07-26T12:05:25Z
dc.date.available
2021-07-26T12:05:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31404
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31137
dc.description.abstract
Metal-sulfur batteries (MSBs) are considered up-and-coming future-generation energy storage systems because of their prominent theoretical energy density. However, the practical applications of MSBs are still hampered by several critical challenges, i.e., the shuttle effects, sluggish redox kinetics, and low conductivity of sulfur species. Recently, benefiting from the high surface area, regulated networks, molecular/atomic-level reactive sites, the metal-organic frameworks (MOFs)-derived nanostructures have emerged as efficient and durable multifaceted electrodes in MSBs. Herein, a timely review is presented on recent advancements in designing MOF-derived electrodes, including fabricating strategies, composition management, topography control, and electrochemical performance assessment. Particularly, the inherent charge transfer, intrinsic polysulfide immobilization, and catalytic conversion on designing and engineering of MOF nanostructures for efficient MSBs are systematically discussed. In the end, the essence of how MOFs’ nanostructures influence their electrochemical properties in MSBs and conclude the future tendencies regarding the construction of MOF-derived electrodes in MSBs is exposed. It is believed that this progress review will provide significant experimental/theoretical guidance in designing and understanding the MOF-derived nanostructures as multifaceted electrodes, thus offering promising orientations for the future development of fast-kinetic and robust MSBs in broad energy fields.
en
dc.format.extent
38 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
energy storage materials
en
dc.subject
metal‐organic frameworks
en
dc.subject
metal–sulfur batteries
en
dc.subject
nanostructures
en
dc.subject
porous carbon
en
dc.subject
polysulfide catalysts
en
dc.subject
polysulfide electrodes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Metal–Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2008784
dcterms.bibliographicCitation.doi
10.1002/adma.202008784
dcterms.bibliographicCitation.journaltitle
Advanced Materials
dcterms.bibliographicCitation.number
27
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adma.202008784
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-4095
refubium.resourceType.provider
WoS-Alert