dc.contributor.author
Ren, Fei
dc.date.accessioned
2021-07-15T11:07:27Z
dc.date.available
2021-07-15T11:07:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31310
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-31046
dc.description.abstract
Let X be a separated scheme of finite type over k with k being a perfect field of positive characteristic p. In this thesis we define a complex K_{n,X,log} via Grothendieck’s duality theory of coherent sheaves following [Kat87] and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de Rham-Witt sheaves \tilde \nu_{n,X} to K_{n,X,log} for the etale topology, and also for the Zariski topology under the extra assumption k =\bar k. Combined with Zhong’s quasi-isomorphism from Bloch’s cycle complex Z^c_X to \tilde \nu_{n,X} [Zho14, 2.16], we deduce certain vanishing, etale descent properties as well as invariance under rational resolutions for higher Chow groups of 0-cycles with Z/p^n-coefficients.
en
dc.format.extent
vii, 73 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Higher Chow groups
en
dc.subject
Grothendieck duality theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::513 Arithmetik
dc.title
p-primary torsion part of Bloch's cycle complex from Grothendieck's coherent duality point of view
dc.contributor.gender
unknown
dc.contributor.firstReferee
Rülling, Kay
dc.contributor.furtherReferee
Schmitt, Alexander
dc.contributor.furtherReferee
Geisser, Thomas
dc.date.accepted
2020-09-28
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-31310-4
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access