dc.contributor.author
Klein, Rupert
dc.contributor.author
Ebrahimi Viand, Roya
dc.contributor.author
Höfling, Felix
dc.contributor.author
Delle Site, Luigi
dc.date.accessioned
2021-07-19T10:24:43Z
dc.date.available
2021-07-19T10:24:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31204
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30940
dc.description.abstract
In a recently proposed computational model of open molecular systems out of equilibrium the action of different reservoirs enters as a linear sum into the Liouville-type evolution equations for the open system's statistics. The linearity of the coupling is common to different mathematical models of open systems and essentially relies on neglecting the feedback of the system onto the reservoir due to their interaction. In this paper, the range of applicability of the computational model is tested with a linear coupling to two different reservoirs, which induces a nonequilibrium situation. To this end, the density profiles of Lennard–Jones liquids in large thermal gradients are studied using nonequilibrium molecular dynamics simulations with open boundaries. The authors put in perspective the formulation of an extension of the mathematical model that can account for nonlinear effects.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
nonequilibrium molecular dynamics
en
dc.subject
adaptive resolution method
en
dc.subject
open systems
en
dc.subject
mathematical models
en
dc.subject
numerical tests
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Nonequilibrium Induced by Reservoirs: Physico-Mathematical Models and Numerical Tests
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2100071
dcterms.bibliographicCitation.doi
10.1002/adts.202100071
dcterms.bibliographicCitation.journaltitle
Advanced Theory and Simulations
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adts.202100071
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2513-0390
refubium.resourceType.provider
WoS-Alert