dc.contributor.author
Peña, Carlos
dc.contributor.author
Heidbach, Oliver
dc.contributor.author
Moreno, Marcos
dc.contributor.author
Melnick, Daniel
dc.contributor.author
Oncken, Onno
dc.date.accessioned
2021-06-25T12:26:55Z
dc.date.available
2021-06-25T12:26:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/31165
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30901
dc.description.abstract
Evaluating the transfer of stresses from megathrust earthquakes to adjacent segments is fundamental to assess seismic hazard. Here, we use a 3D forward model as well as GPS and seismic data to investigate the transient deformation and Coulomb Failure Stresses (CFS) changes induced by the 2010 Maule earthquake in its northern segment, where the Mw 8.3 Illapel earthquake occurred in 2015. The 3D model incorporates the coseismically instantaneous, elastic response, and time-dependent afterslip and viscoelastic relaxation processes in the postseismic period. We particularly examine the impact of linear and power-law rheology on the resulting postseismic deformation and CFS changes that may have triggered the Illapel earthquake. At the Illapel hypocenter, our model results in CFS changes of ∼0.06 bar due to the coseismic and postseismic deformation, where the coseismic deformation accounts for ∼85% of the total CFS changes. This is below the assumed triggering threshold of 0.1 bar and, compared to the annual loading rate of the plate interface, represents a clock advance of approximately only 2 months. However, we find that sixteen events with Mw ≥ 5 in the southern region occurred in regions of CFS changes > 0.1 bar, indicating a potential triggering by the Maule event. Interestingly, while the power-law rheology model increases the positive coseismic CFS changes, the linear rheology reduces them. This is due to the opposite polarity of the postseismic displacements resulting from the rheology model choice. The power-law rheology model generates surface displacements that fit better to the GPS-observed landward displacement pattern.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Maule earthquake
en
dc.subject
Illapel segment
en
dc.subject
postseismic deformation
en
dc.subject
power-law rheology model
en
dc.subject
earthquake triggering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Transient Deformation and Stress Patterns Induced by the 2010 Maule Earthquake in the Illapel Segment
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
644834
dcterms.bibliographicCitation.doi
10.3389/feart.2021.644834
dcterms.bibliographicCitation.journaltitle
Frontiers in Earth Science
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.3389/feart.2021.644834
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2296-6463
refubium.resourceType.provider
WoS-Alert