Since the dawn of time, multicellular life has been exposed to a wide range of microbes. A share of them will not interfere with the host development or daily homeostasis, some might even contribute to it and potentially become essential, such as gut microbiota. However, a smaller, but significant, fraction of them will threaten the correct livelihood of their host, often defined as parasites or pathogens, depending on their properties or the scientific school that is addressing them. Hosts face this kind of organisms on a daily basis. Most parasites we face every day present low virulence and frequently their menace happens by chance, commonly referred as opportunistic pathogens, as is the case of microbiota that following a given stress might grow uncontrollably. On the other side of the spectrum, we have parasites that under normal conditions hosts might be exposed much less often but exhibit a higher level of virulence and pathogenicity, the so-called pathogens. Therefore, just by focusing on a parasite virulence we observe a wide range of threats to the host. Nevertheless, there are an immense range of properties intrinsic to the parasite that might influence the outcome of a host-parasite, or better a host-pathogen, interaction. These properties can include infection site, transmission rate and which resources they hitchhike. In face of these threats, hosts were selected to develop an equivalent wide set of immune responses with different costs and benefits to themselves. Immunity can be further divided into innate and adaptive. The latter is a complex branch only found in vertebrates, and therefore, I will focus on the most universal branch of the immune system throughout this thesis, the innate immune responses. Hosts evolved resistance and tolerance strategies, two disparate sets of mechanisms that in a stricto sensu aim to clear or cope with the infection. Naturally, these strategies will have very distinct consequences for the ecology and evolution of a host-parasite interaction and each of the populations' evolutionary history. Moreover, in the current medicine state and health crisis, the study of these strategies offers new insights and solutions for immunology and epidemiology. Up to now, when we address an infection, fighting and hopefully clearing the parasite burden is the first solution that comes to mind. We define the latter as resistance, particularly quantitative resistance as it reduces the parasite number. Nevertheless, resistance comes with a number of cons. Resistance mechanisms are usually very costly, either by the effectors induction or the collateral damage caused by these (e.g. oxidative stress and consequent inflammation). Furthermore, resistance acts on the parasite number and therefore selects for increased virulence alleles on the parasite side that will in turn select for further host increased resistance and so forth. This antagonistic coevolution between the host and parasite is often referred as Red Queen dynamics and it is one of the major selective forces in nature. On the other hand, tolerance acts by reducing or controlling the damage employed by either the parasite itself or by the immune response. Hence, this strategy does not affect the parasite burden and consequently, it is not expected to select for higher virulence. Experimentally, we quantify tolerance as the reduction of a given infection cost in fitness measures, such as fecundity-tolerance for reproductive fitness or mortality tolerance for survival. Unfortunately, tolerance studies are scarce and often reflect theoretical predictions from modelling or studies from plant biology, where most of our understanding comes from.
In this thesis, we started by investigating how different pathogens shape infection dynamics outcome in an outbred population of Drosophila melanogaster and second, how does a host population respond to the exposure to different pathogens in the short and long-term. In Chapter 3, we exposed a D. melanogaster population to a variety of parasites from low to high virulence and low to high inoculum size. This allowed us to characterize bacterial infections during the host lifetime. From the host side, we focused on common points such as clearance ability, while on the parasite side we turned to its aptitude to persist within the host. Furthermore, we decompose parasitic virulence into smaller factors, such as host exploitation or per-parasite pathogenicity, i.e. how well the bacterial species survive and replicate within the host, and the amount of damage they inflict. In Chapter 4, we turn our focus to the host and addressed how the variation in parasite burden at given time-points during infection reflects variation in the immune strategies. Here we showed that throughout a bacterial infection with Lactococcus lactis, individuals become less tolerant and less resistant across the two time-points measured, potentially indicating immunity costs. Curiously, we also observed that individuals unable to control parasite burden in the acute phase are particularly less tolerant than their counterparts. Lastly, in Chapter 5 we examined what are the evolutionary implications of selection for host resistance and fecundity-tolerance in a specific host-parasite interaction, D. melanogaster and L. lactis. Interestingly, our results show that after eight generations of selection, tolerance seems to be the favoured immune strategy to evolve in both resistance and tolerance selection regimes. This result suggests tolerance mechanisms might offer less costs or be more promptly available under the settings of this study. Altogether, our results help to clarify some of the implications and properties of these strategies on the dynamics of host-parasite interactions, as well as bring to light a new set of questions regarding tolerance and all its underpinnings.
Tiere sind täglich einer Vielzahl von Mikroorganismen ausgesetzt. Die Wechselwirkung zwischen ihnen kann von positiv bis negativ reichen. Letztere Art von Mikroorganismen werden je nach ihren Eigenschaften als Parasiten oder Krankheitserreger bezeichnet. Wirte reagieren auf eine Infektion mit verschiedenen Strategien, nämlich mit Resistenz oder Toleranz. Resistenz zielt darauf ab, die Anzahl der Parasiten zu reduzieren oder eine Infektion vollständig zu beseitigen. Auf der anderen Seite erlaubt Toleranz dem Wirt, mit den Auswirkungen einer Infektion und der Immunantwort zurechtzukommen. Natürlich führen diese beiden Strategien zu sehr unterschiedlichen Ergebnissen sowohl in der Evolution, als auch in der Ökologie der Wirt-Parasit-Interaktion, aber auch zu unterschiedlichen Implikationen für Medizin, Immunologie und Epidemiologie. Resistenz wirkt sich auf die Parasitenzahl aus und selektiert daher auf erhöhte Virulenz. Auf der anderen Seite beeinflusst Toleranz nicht die Parasitenlast und sollte daher laut Studien einen neutralen bis positiven Effekt auf die Parasitenprävalenz und die Evolution haben.
In dieser Arbeit untersuchten wir: i) wie verschiedene Parasiten die Infektionsdynamik und deren Ergebnis in einer Population von Drosophila melanogaster beeinflussen; ii) wie ein Wirt kurzfristig auf eine Infektion mit einem bestimmten Parasiten reagiert; iii) ob der Wirt langfristig eine Resistenz oder Toleranz entwickeln kann. In Kapitel 3 wurde unsere Population von D. melanogaster mit verschiedenen Krankheitserregern in unterschiedlichen Inokulationsdosen infiziert. Die Infektionsdynamik wurde über die gesamte Lebensdauer des Wirts verfolgt. Auf der Seite des Wirts konzentrierten wir uns auf die Clearance-Fähigkeit. Auf der Seite der Parasiten analysierten wir deren Persistenz im Wirt. Wir zerlegten die Virulenz der Parasiten weiter in kleinere Faktoren. In Kapitel 4 konzentrierten wir uns auf die Dynamik der Wirtsresistenz und -toleranz während verschiedener Phasen der Infektion. Unsere Ergebnisse zeigen, dass bei einer Infektion mit Lactococcus lactis der Wirt mit der Zeit weniger tolerant und weniger resistent wird. Darüber hinaus sind Individuen, die in der akuten Phase nicht in der Lage sind, die Parasitenzahl zu kontrollieren, weniger tolerant als ihre Gegenspieler. In Kapitel 5 haben wir bei D. melanogaster, die mit L. lactis infiziert wurde, auf Wirtsresistenz und Fruchtbarkeitstoleranz selektiert. Unsere Ergebnisse zeigen, dass sich nach acht Generationen der Selektion die Toleranz sowohl bei der Resistenz-, als auch bei der Toleranzselektion entwickelt. Dieses Ergebnis deutet darauf hin, dass Toleranz unter den Bedingungen dieser Studie weniger Energie verbraucht und für den Wirt schneller verfügbar ist. Insgesamt zeigen unsere Ergebnisse die Auswirkungen und Eigenschaften dieser Immunstrategien auf die Dynamik von Wirt-Parasit-Interaktionen und bringen eine Reihe neuer Fragen zur Toleranz und ihren Grundlagen ans Licht.