dc.contributor.author
Kröckel, Claudia
dc.contributor.author
Preciado-Rivas, María Rosa
dc.contributor.author
Torres-Sánchez, Victor Alexander
dc.contributor.author
Mowbray, Duncan J.
dc.contributor.author
Reich, Stephanie
dc.contributor.author
Hauke, Frank
dc.contributor.author
Chacón Torres, Julio C.
dc.contributor.author
Hirsch, Andreas
dc.date.accessioned
2021-11-10T10:34:37Z
dc.date.available
2021-11-10T10:34:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30774
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30513
dc.description.abstract
Single-walled carbon nanotubes (SWCNTs) can be doped with potassium, similar to graphite, leading to intercalation compounds. These binary systems exhibit a clear metallic character. However, the entire picture of how electron doping (e-doping) modifies the SWCNTs’ vibrational spectra as a function of their diameter, chirality, and metallicity is still elusive. Herein, we present a detailed study of the intercalation and solid state reduction of metallic and semiconducting enriched HiPco SWCNTs. We performed a combined experimental and theoretical study of the evolution of their Raman response with potassium exposure, focusing specifically on their radial breathing mode (RBM). We found the charge donated from the potassium atoms occupies antibonding π orbitals of the SWCNTs, weakening their C–C bonds, and reducing the RBM frequency. This RBM downshift with increasing doping level is quasi-linear with a steplike behavior when the Fermi level crosses a van Hove singularity for semiconducting species. Moreover, this weakening of the C–C bonds is greater with decreasing curvature, or increasing diameter. Overall, this suggests the RBM downshift with e-doping is proportional to both the SWCNT’s integrated density of states (DOS) ϱ(ε) and diameter d. We have provided a precise and complete description of the complex electron doping mechanism in SWCNTs up to a charge density of −18 me/C, far beyond that achievable by standard gate voltage studies, not being the highest doping possible, but high enough to track the effects of doping in SWCNTs based on their excitation energy, diameter, band gap energy, chiral angle, and metallicity. This work is highly relevant to tuning the electronic properties of SWCNTs for applications in nanoelectronics, plasmonics, and thermoelectricity.
en
dc.format.extent
10 Seiten (Manuskriptversin)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Carbon nanotubes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Understanding the electron-doping mechanism in potassium-intercalated single-walled carbon nanotubes
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
73963
dcterms.bibliographicCitation.doi
10.1021/jacs.9b11370
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
ACS Publications
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
2327
dcterms.bibliographicCitation.pageend
2337
dcterms.bibliographicCitation.volume
142
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacs.9b11370
dcterms.rightsHolder.url
https://publish.acs.org/publish/author_guidelines?coden=jpclcd#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0002-7863