dc.contributor.author
Fiedler, Bernold
dc.contributor.author
Rocha, Carlos
dc.date.accessioned
2022-11-10T08:36:16Z
dc.date.available
2022-11-10T08:36:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30742
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30481
dc.description.abstract
We embark on a detailed analysis of the close relations between combinatorial and geometric aspects of the scalar parabolic PDE
ut=uxx+f(x,u,ux)
(*)
on the unit interval 0<x<1
with Neumann boundary conditions. We assume f to be dissipative with N hyperbolic equilibria v∈E. The global attractor A of (*), also called Sturm global attractor, consists of the unstable manifolds of all equilibria v. As cells, these form the Thom–Smale complex C. Based on the fast unstable manifolds of v, we introduce a refinement Cs of the regular cell complex C, which we call the signed Thom–Smale complex. Given the signed cell complex Cs and its underlying partial order, only, we derive the two total boundary orders hι:{1,…,N}→E of the equilibrium values v(x) at the two Neumann boundaries ι=x=0,1
. In previous work we have already established how the resulting Sturm permutation
σ:=h−10∘h1,
conversely, determines the global attractor A
uniquely, up to topological conjugacy.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
scalar parabolic PDE
en
dc.subject
combinatorial aspects
en
dc.subject
geometric aspects
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Boundary Orders and Geometry of the Signed Thom–Smale Complex for Sturm Global Attractors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10884-020-09836-5
dcterms.bibliographicCitation.journaltitle
Journal of Dynamics and Differential Equations
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
2787
dcterms.bibliographicCitation.pageend
2818
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10884-020-09836-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1040-7294
dcterms.isPartOf.eissn
1572-9222