dc.contributor.author
Boyadzhiyska, Simona
dc.contributor.author
Das, Shagnik
dc.contributor.author
Szabó, Tibor
dc.date.accessioned
2021-05-10T09:38:49Z
dc.date.available
2021-05-10T09:38:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30705
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30444
dc.description.abstract
Two n×n Latin squares L1,L2 are said to be orthogonal if, for every ordered pair (x, y) of symbols, there are coordinates (i, j) such that L1(i,j)=x and L2(i,j)=y. A k-MOLS is a sequence of k pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a great deal of attention. Recent work of Keevash and Luria provides, for all fixed k, log-asymptotically tight bounds on the number of k-MOLS. To study the situation when k grows with n, we bound the number of ways a k-MOLS can be extended to a (k+1)-MOLS. These bounds are again tight for constant k, and allow us to deduce upper bounds on the total number of k-MOLS for all k. These bounds are close to tight even for k linear in n, and readily generalise to the broader class of gerechte designs, which include Sudoku squares.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Latin squares
en
dc.subject
Orthogonal mates
en
dc.subject
Gerechte designs
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Enumerating extensions of mutually orthogonal Latin squares
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10623-020-00771-6
dcterms.bibliographicCitation.journaltitle
Designs, Codes and Cryptography
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
2187
dcterms.bibliographicCitation.pageend
2206
dcterms.bibliographicCitation.volume
88
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10623-020-00771-6
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0925-1022
dcterms.isPartOf.eissn
1573-7586