dc.contributor.author
Moon, Sooyeon
dc.contributor.author
Chatterjee, Sourav
dc.contributor.author
Seeberger, Peter H.
dc.contributor.author
Gilmore, Kerry
dc.date.accessioned
2021-05-05T09:54:16Z
dc.date.available
2021-05-05T09:54:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30654
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30393
dc.description.abstract
Predicting the stereochemical outcome of chemical reactions is challenging in mechanistically ambiguous transformations. The stereoselectivity of glycosylation reactions is influenced by at least eleven factors across four chemical participants and temperature. A random forest algorithm was trained using a highly reproducible, concise dataset to accurately predict the stereoselective outcome of glycosylations. The steric and electronic contributions of all chemical reagents and solvents were quantified by quantum mechanical calculations. The trained model accurately predicts stereoselectivities for unseen nucleophiles, electrophiles, acid catalyst, and solvents across a wide temperature range (overall root mean square error 6.8%). All predictions were validated experimentally on a standardized microreactor platform. The model helped to identify novel ways to control glycosylation stereoselectivity and accurately predicts previously unknown means of stereocontrol. By quantifying the degree of influence of each variable, we begin to gain a better general understanding of the transformation, for example that environmental factors influence the stereoselectivity of glycosylations more than the coupling partners in this area of chemical space.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stereochemical outcome
en
dc.subject
machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Predicting glycosylation stereoselectivity using machine learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D0SC06222G
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
2931
dcterms.bibliographicCitation.pageend
2939
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D0SC06222G
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-6520
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert