dc.contributor.author
Bresciani, Giulio
dc.date.accessioned
2021-05-03T09:35:48Z
dc.date.available
2021-05-03T09:35:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30628
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30367
dc.description.abstract
Grothendieck gave two forms of his "main conjecture of anabelian geometry", namely the section conjecture and the hom conjecture. He stated that these two forms are equivalent and that if they hold for hyperbolic curves, then they hold for elementary anabelian varieties too. We state a stronger form of Grothendieck's conjecture (equivalent in the case of curves) and prove that Grothendieck's statements hold for our form of the conjecture. We work with DM stacks, rather than schemes. If X is a DM stack over k subset of C, we prove that whether X satisfies the conjecture or not depends only on X-C. We prove that the section conjecture for hyperbolic orbicurves stated by Borne and Emsalem follows from the conjecture for hyperbolic curves.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
section conjecture
en
dc.subject
anabelian geometry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Some implications between Grothendieck's anabelian conjectures
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.14231/AG-2021-005
dcterms.bibliographicCitation.journaltitle
Algebraic Geometry
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
231
dcterms.bibliographicCitation.pageend
267
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.14231/AG-2021-005
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2313-1691
dcterms.isPartOf.eissn
2214-2584
refubium.resourceType.provider
WoS-Alert