dc.contributor.author
Kreh, Martin
dc.contributor.author
de Wiljes, Jan-Hendrik
dc.date.accessioned
2021-05-03T08:23:15Z
dc.date.available
2021-05-03T08:23:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30537
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30277
dc.description.abstract
In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the "most" unsolvable graphs.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Peg solitaire
en
dc.subject
Cartesian product
en
dc.subject
Ladder graph
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Peg Solitaire on Cartesian Products of Graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00373-021-02289-7
dcterms.bibliographicCitation.journaltitle
Graphs and Combinatorics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
907
dcterms.bibliographicCitation.pageend
917
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00373-021-02289-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0911-0119
dcterms.isPartOf.eissn
1435-5914
refubium.resourceType.provider
WoS-Alert