dc.contributor.author
Laun, Konstantin
dc.contributor.author
Baranova, Iuliia
dc.contributor.author
Duan, Jifu
dc.contributor.author
Kertess, Leonie
dc.contributor.author
Wittkamp, Florian
dc.contributor.author
Apfel, Ulf-Peter
dc.contributor.author
Happe, Thomas
dc.contributor.author
Senger, Moritz
dc.contributor.author
Stripp, Sven T.
dc.date.accessioned
2021-04-26T08:06:36Z
dc.date.available
2021-04-26T08:06:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30532
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30272
dc.description.abstract
Hydrogenases are bidirectional redox enzymes that catalyze hydrogen turnover in archaea, bacteria, and algae. While all types of hydrogenase show H-2 oxidation activity, [FeFe]-hydrogenases are excellent H-2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands. The active site niche is connected with the solvent by two distinct proton transfer pathways. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ operando infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H-2 oxidation or H-2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pK(a) differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the complex interdependence of hydrogen turnover and bulk pH.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
[FeFe]-hydrogenases
en
dc.subject
H-2 oxidation
en
dc.subject
H-2 evolution
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D1DT00110H
dcterms.bibliographicCitation.journaltitle
Dalton Transactions
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
3641
dcterms.bibliographicCitation.pageend
3650
dcterms.bibliographicCitation.volume
50
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D1DT00110H
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1477-9226
dcterms.isPartOf.eissn
1477-9234
refubium.resourceType.provider
WoS-Alert