dc.contributor.author
Hubregtsen, Thomas
dc.contributor.author
Pichlmeier, Josef
dc.contributor.author
Stecher, Patrick
dc.contributor.author
Bertels, Koen
dc.date.accessioned
2021-04-22T05:49:45Z
dc.date.available
2021-04-22T05:49:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30455
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30195
dc.description.abstract
An active area of investigation in the search for quantum advantage is quantum machine learning. Quantum machine learning, and parameterized quantum circuits in a hybrid quantum-classical setup in particular, could bring advancements in accuracy by utilizing the high dimensionality of the Hilbert space as feature space. But is the ability of a quantum circuit to uniformly address the Hilbert space a good indicator of classification accuracy? In our work, we use methods and quantifications from prior art to perform a numerical study in order to evaluate the level of correlation. We find a moderate to strong correlation between the ability of the circuit to uniformly address the Hilbert space and the achieved classification accuracy for circuits that entail a single embedding layer followed by 1 or 2 circuit designs. This is based on our study encompassing 19 circuits in both 1- and 2-layer configurations, evaluated on 9 datasets of increasing difficulty. We also evaluate the correlation between entangling capability and classification accuracy in a similar setup, and find a weak correlation. Future work will focus on evaluating if this holds for different circuit designs.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum neural networks
en
dc.subject
Parameterized quantum circuits
en
dc.subject
Expressibility
en
dc.subject
Quantum machine learning
en
dc.subject
Quantum computing
en
dc.subject
Entangling capability
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9
dcterms.bibliographicCitation.doi
10.1007/s42484-021-00038-w
dcterms.bibliographicCitation.journaltitle
Quantum Machine Intelligence
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s42484-021-00038-w
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2524-4906
dcterms.isPartOf.eissn
2524-4914