dc.contributor.author
Tonello, Elisa
dc.contributor.author
Siebert, Heike
dc.date.accessioned
2021-04-16T12:15:50Z
dc.date.available
2021-04-16T12:15:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30396
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30137
dc.description.abstract
We study Boolean networks which are simple spatial models of the highly conserved Delta–Notch system. The models assume the inhibition of Delta in each cell by Notch in the same cell, and the activation of Notch in presence of Delta in surrounding cells. We consider fully asynchronous dynamics over undirected graphs representing the neighbour relation between cells. In this framework, one can show that all attractors are fixed points for the system, independently of the neighbour relation, for instance by using known properties of simplified versions of the models, where only one species per cell is defined. The fixed points correspond to the so-called fine-grained “patterns” that emerge in discrete and continuous modelling of lateral inhibition. We study the reachability of fixed points, giving a characterisation of the trap spaces and the basins of attraction for both the full and the simplified models. In addition, we use a characterisation of the trap spaces to investigate the robustness of patterns to perturbations. The results of this qualitative analysis can complement and guide simulation-based approaches, and serve as a basis for the investigation of more complex mechanisms.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Boolean networks
en
dc.subject
Multi-cellular systems
en
dc.subject
Cell signalling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Boolean analysis of lateral inhibition
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00285-020-01515-9
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Biology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
463
dcterms.bibliographicCitation.pageend
486
dcterms.bibliographicCitation.volume
81
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00285-020-01515-9
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik / Diskrete Biomathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0303-6812
dcterms.isPartOf.eissn
1432-1416