dc.contributor.author
Borndörfer, Ralf
dc.contributor.author
Eßer, Thomas
dc.contributor.author
Frankenberger, Patrick
dc.contributor.author
Huck, Andreas
dc.contributor.author
Jobmann, Christoph
dc.contributor.author
Krostitz, Boris
dc.contributor.author
Kuchenbecker, Karsten
dc.contributor.author
Mohrhagen, Kai
dc.contributor.author
Nagl, Philipp
dc.contributor.author
Peterson, Michael
dc.date.accessioned
2021-04-16T09:02:16Z
dc.date.available
2021-04-16T09:02:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30383
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30124
dc.description.abstract
Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are addressed using a novel coarse-to-fine method that implements a hierarchical column generation over three levels of detail. This algorithm is the mathematical core of DB's fleet employment optimization (FEO) system for rolling stock rotation planning. FEO's impact within DB's planning departments has been revolutionary. DB has used it to support the company's procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for crossborder operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB's planning departments appreciate FEO's high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in crossborder operations to the implementation of FEO.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
transportation
en
dc.subject
large-scale systems
en
dc.subject
integer programming
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1287/inte.2020.1069
dcterms.bibliographicCitation.journaltitle
INFORMS Journal on Applied Analytics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
42
dcterms.bibliographicCitation.pageend
62
dcterms.bibliographicCitation.volume
51
dcterms.bibliographicCitation.url
https://doi.org/10.1287/inte.2020.1069
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0092-2102
dcterms.isPartOf.eissn
1526-551X
refubium.resourceType.provider
WoS-Alert