dc.contributor.author
Klassen, Joel
dc.contributor.author
Marvian, Milad
dc.contributor.author
Piddock, Stephen
dc.contributor.author
Ioannou, Marios
dc.contributor.author
Hen, Itay
dc.contributor.author
Terhal, Barbara M.
dc.date.accessioned
2021-11-08T12:23:58Z
dc.date.available
2021-11-08T12:23:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/30331
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-30071
dc.description.abstract
We examine the problem of determining whether a multiqubit two-local Hamiltonian can be made stoquastic by single-qubit unitary transformations. We prove that when such a Hamiltonian contains one-local terms, then this task can be NP-hard. This is shown by constructing a class of Hamiltonians for which performing this task is equivalent to deciding 3-SAT. In contrast, we show that when such a Hamiltonian contains no one-local terms then this task is easy; namely, we present an algorithm which decides, in a number of arithmetic operations over $\mathbb{R}$ which is polynomial in the number of qubits, whether the sign problem of the Hamiltonian can be cured by single-qubit rotations.
en
dc.format.extent
31 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
computational complexity
en
dc.subject
sign problem
en
dc.subject
quantum Monte Carlo
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Hardness and Ease of Curing the Sign Problem for Two-Local Qubit Hamiltonians
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
81444
dcterms.bibliographicCitation.doi
10.1137/19M1287511
dcterms.bibliographicCitation.journaltitle
SIAM Journal on Computing
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
SIAM
dcterms.bibliographicCitation.originalpublisherplace
Philadelphia, Pa.
dcterms.bibliographicCitation.pagestart
1332
dcterms.bibliographicCitation.pageend
1362
dcterms.bibliographicCitation.volume
49
dcterms.bibliographicCitation.url
https://doi.org/10.1137/19M1287511
dcterms.rightsHolder.url
https://www.siam.org/publications/journals/related/journal-policies/detail/open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
![This authority value has been confirmed as accurate by an interactive user](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0097-5397