dc.contributor.author
Wang, Jiang
dc.contributor.author
Chmiela, Stefan
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Noe, Frank
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2021-03-17T10:52:25Z
dc.date.available
2021-03-17T10:52:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29965
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29707
dc.description.abstract
Gradient-domain machine learning (GDML) is an accurate and efficient approach to learn a molecular potential and associated force field based on the kernel ridge regression algorithm. Here, we demonstrate its application to learn an effective coarse-grained (CG) model from all-atom simulation data in a sample efficient manner. The CG force field is learned by following the thermodynamic consistency principle, here by minimizing the error between the predicted CG force and the all-atom mean force in the CG coordinates. Solving this problem by GDML directly is impossible because coarse-graining requires averaging over many training data points, resulting in impractical memory requirements for storing the kernel matrices. In this work, we propose a data-efficient and memory-saving alternative. Using ensemble learning and stratified sampling, we propose a 2-layer training scheme that enables GDML to learn an effective CG model. We illustrate our method on a simple biomolecular system, alanine dipeptide, by reconstructing the free energy landscape of a CG variant of this molecule. Our novel GDML training scheme yields a smaller free energy error than neural networks when the training set is small, and a comparably high accuracy when the training set is sufficiently large.
en
dc.format.extent
13 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Artificial neural networks
en
dc.subject
Molecular dynamics
en
dc.subject
Machine learning
en
dc.subject
Computer simulation
en
dc.subject
Coarse-grain model
en
dc.subject
Coarse-grained force fields
en
dc.subject
Free energy landscapes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
80497
dcterms.bibliographicCitation.articlenumber
194106
dcterms.bibliographicCitation.doi
10.1063/5.0007276
dcterms.bibliographicCitation.journaltitle
The journal of chemical physics
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
152
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/5.0007276
refubium.affiliation
Physik
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Open Access in Allianz- und Nationallizenz.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0021-9606