dc.contributor.author
Li, Tommy
dc.contributor.author
Ingham, Julian
dc.contributor.author
Scammell, Harley D.
dc.date.accessioned
2021-02-12T13:02:50Z
dc.date.available
2021-02-12T13:02:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29614
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29358
dc.description.abstract
Artificial lattices have served as a platform to study the physics of unconventional superconductivity. We study semiconductor artificial graphene-a honeycomb superlattice imposed on a semiconductor heterostructure-which hosts the Dirac physics of graphene but with a tunable periodic potential strength and lattice spacing, allowing control of the strength of the electron-electron interactions. We demonstrate a new mechanism for superconductivity due to repulsive interactions which requires a strong lattice potential and a minimum doping away from the Dirac points. The mechanism relies on the Berry phase of the emergent Dirac fermions, which causes oppositely moving electron pairs near the Dirac points to interfere destructively, reducing the Coulomb repulsion and thereby giving rise to an effective attraction. The attractive component of the interaction is enhanced by a novel antiscreening effect which, in turn, increases with doping; as a result, there is a minimum doping beyond which superconducting order generically ensues. The dominant superconducting state exhibits a spatially modulated gap with chiral p-wave symmetry. Microscopic calculations suggest that the possible critical temperatures are large relative to the low carrier densities, for a range of experimentally realistic parameters.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Dirac fermions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Artificial graphene: Unconventional superconductivity in a honeycomb superlattice
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
043155
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.2.043155
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.2.043155
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert