dc.contributor.author
Carota, Francesca
dc.contributor.author
Nili, Hamed
dc.contributor.author
Pulvermüller, Friedemann
dc.contributor.author
Kriegeskorte, Nikolaus
dc.date.accessioned
2021-01-29T13:42:29Z
dc.date.available
2021-01-29T13:42:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/29411
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-29157
dc.description.abstract
A class of semantic theories defines concepts in terms of statistical distributions of lexical items, basing meaning on vectors of word co-occurrence frequencies. A different approach emphasizes abstract hierarchical taxonomic relationships among concepts. However, the functional relevance of these different accounts and how they capture information-encoding of lexical meaning in the brain still remains elusive.
We investigated to what extent distributional and taxonomic models explained word-elicited neural responses using cross-validated representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) and model comparisons.
Our findings show that the brain encodes both types of semantic information, but in distinct cortical regions. Posterior middle temporal regions reflected lexical-semantic similarity based on hierarchical taxonomies, in coherence with the action-relatedness of specific semantic word categories. In contrast, distributional semantics best predicted the representational patterns in left inferior frontal gyrus (LIFG, BA 47). Both representations coexisted in the angular gyrus supporting semantic binding and integration. These results reveal that neuronal networks with distinct cortical distributions across higher-order association cortex encode different representational properties of word meanings. Taxonomy may shape long-term lexical-semantic representations in memory consistently with the sensorimotor details of semantic categories, whilst distributional knowledge in the LIFG (BA 47) may enable semantic combinatorics in the context of language use.
Our approach helps to elucidate the nature of semantic representations essential for understanding human language.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Conceptual taxonomies
en
dc.subject
Co-occurrence statistics
en
dc.subject
Representational similarity searchlights
en
dc.subject
Language comprehension
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: evidence from RSA of BOLD signals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
117408
dcterms.bibliographicCitation.doi
10.1016/j.neuroimage.2020.117408
dcterms.bibliographicCitation.journaltitle
NeuroImage
dcterms.bibliographicCitation.volume
224
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.neuroimage.2020.117408
refubium.affiliation
Philosophie und Geisteswissenschaften
refubium.affiliation.other
Brain Language Laboratory
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1053-8119
refubium.resourceType.provider
WoS-Alert