dc.contributor.author
Irrgang, Christopher
dc.contributor.author
Saynisch-Wagner, Jan
dc.contributor.author
Dill, Robert
dc.contributor.author
Boergens, Eva
dc.contributor.author
Thomas, Maik
dc.date.accessioned
2020-11-23T12:28:16Z
dc.date.available
2020-11-23T12:28:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28925
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28674
dc.description.abstract
Quantifying and monitoring terrestrial water storage (TWS) is an essential task for understanding the Earth's hydrosphere cycle, its susceptibility to climate change, and concurrent impacts for ecosystems, agriculture, and water management. Changes in TWS manifest as anomalies in the Earth's gravity field, which are routinely observed from space. However, the complex underlying distribution of water masses in rivers, lakes, or groundwater basins remains elusive. We combine machine learning, numerical modeling, and satellite altimetry to build a downscaling neural network that recovers simulated TWS from synthetic space-borne gravity observations. A novel constrained training is introduced, allowing the neural network to validate its training progress with independent satellite altimetry records. We show that the neural network can accurately derive the TWS in 2019 after being trained over the years 2003 to 2018. Further, we demonstrate that the constrained neural network can outperform the numerical model in validated regions.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
terrestrial water storage
en
dc.subject
hydrology modeling
en
dc.subject
deep learning
en
dc.subject
artificial intelligence
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Self-Validating Deep Learning for Recovering Terrestrial Water Storage From Gravity and Altimetry Measurements
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2020GL089258
dcterms.bibliographicCitation.doi
10.1029/2020GL089258
dcterms.bibliographicCitation.journaltitle
Geophysical Research Letters
dcterms.bibliographicCitation.number
17
dcterms.bibliographicCitation.volume
47
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2020GL089258
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1944-8007
refubium.resourceType.provider
WoS-Alert