dc.contributor.author
Zhong, Yinan
dc.contributor.author
Zhang, Jianguang
dc.contributor.author
Zhang, Junmei
dc.contributor.author
Hou, Yong
dc.contributor.author
Chen, Enping
dc.contributor.author
Huang, Dechun
dc.contributor.author
Chen, Wei
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2021-01-19T05:57:10Z
dc.date.available
2021-01-19T05:57:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28892
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28641
dc.description.abstract
Increased tissue stiffness is a hallmark of cancer and promotes tumor progression. It is hypothesized that decreased tumorous stress may aid or sensitize chemotherapies. To overcome extracellular matrix (ECM) stiffening and fulfill sensitized chemotherapy in one nanosystem, a reactive oxygen species-activatable nanoenzyme (SP-NE) based on a dendritic polyglycerol scaffold, integrating collagenase and paclitaxel (PTX) prodrug, is constructed. The dense and tough ECM is highly remitted by SP-NE in the tumor microenvironment (TME) mimicking gelatin hydrogel models, which causes cell shrinkage, disorders cytoskeletal constructions, and subsequently enhances chemotherapeutic efficacy. ECM softening via SP-NE downregulates mechanotransduction signaling pathways of integrin-focal adhesion kinase (FAK)-Ras homolog family member A (RhoA) implicated in cytoskeletal assembly, and integrin-FAK-phosphorylated extracellular signal regulated kinase (pERK 1/2) mediating mitosis. Notably, this programmed nanosystem in human breast MCF-7 tumor-bearing mice models displays a significant relief of ECM stress from 4300 to 1200 Pa and results in 87.1% suppression of tumor growth at a low PTX dosage of 3 mg kg(-1). The attenuated expression of the key players RhoA and pERK 1/2 involved in cellular mechano-sensing is further verified in vivo. This study thus provides a new and potential nanoplatform to selectively decrease TME stiffness for enhanced chemotherapy.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
mechanical remodeling
en
dc.subject
nanomedicine
en
dc.subject
sensitized chemotherapy
en
dc.subject
tumor microenvironment
en
dc.subject
tumor stiffness
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Tumor Microenvironment-Activatable Nanoenzymes for Mechanical Remodeling of Extracellular Matrix and Enhanced Tumor Chemotherapy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2007544
dcterms.bibliographicCitation.doi
10.1002/adfm.202007544
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202007544
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert