dc.contributor.author
Schenk, P.
dc.contributor.author
Scully, J.
dc.contributor.author
Buczkowski, Debra L.
dc.contributor.author
Sizemore, H.
dc.contributor.author
Schmidt, B.
dc.contributor.author
Pieters, C.
dc.contributor.author
Neesemann, Alicia
dc.contributor.author
O'Brien, D.
dc.contributor.author
Marchi, S.
dc.contributor.author
Williams, D.
dc.date.accessioned
2020-09-16T12:53:25Z
dc.date.available
2020-09-16T12:53:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/28287
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-28037
dc.description.abstract
Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification. These features are distinct from and less extensive than on Mars, indicating that Occator melts may be less gas-rich or volatiles partially inhibited from reaching the surface. Bright salts at Vinalia Faculae form thin surficial precipitates sourced from hydrothermal brine effusion at many individual sites, coalescing in several larger centers, but their ages are statistically indistinguishable from floor materials, allowing for but not requiring migration of brines from deep crustal source(s). Dawn mission's second extended phase provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show stereo imaging and topographic maps of this crater revealing the influence of crustal composition on impact related melt and hydrothermal processes, and compare features to those on Mars, Earth and the Moon.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
shallow subsurface
en
dc.subject
interior structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3679
dcterms.bibliographicCitation.doi
10.1038/s41467-020-17184-7
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-020-17184-7
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert