dc.contributor.author
Endres, Michael G.
dc.contributor.author
Hillen, Florian
dc.contributor.author
Salloumis, Marios
dc.contributor.author
Sedaghat, Ahmad R.
dc.contributor.author
Niehues, Stefan M.
dc.contributor.author
Quatela, Olivia
dc.contributor.author
Hanken, Henning
dc.contributor.author
Smeets, Ralf
dc.contributor.author
Beck-Broichsitter, Benedicta
dc.contributor.author
Rendenbach, Carsten
dc.contributor.author
Lakhani, Karim
dc.contributor.author
Heiland, Max
dc.contributor.author
Gaudin, Robert A.
dc.date.accessioned
2020-07-30T08:32:18Z
dc.date.available
2020-07-30T08:32:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27852
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27605
dc.description.abstract
Periapical radiolucencies, which can be detected on panoramic radiographs, are one of the most common radiographic findings in dentistry and have a differential diagnosis including infections, granuloma, cysts and tumors. In this study, we seek to investigate the ability with which 24 oral and maxillofacial (OMF) surgeons assess the presence of periapical lucencies on panoramic radiographs, and we compare these findings to the performance of a predictive deep learning algorithm that we have developed using a curated data set of 2902 de-identified panoramic radiographs. The mean diagnostic positive predictive value (PPV) of OMF surgeons based on their assessment of panoramic radiographic images was 0.69(± 0.13), indicating that dentists on average falsely diagnose 31% of cases as radiolucencies. However, the mean diagnostic true positive rate (TPR) was 0.51(± 0.14), indicating that on average 49% of all radiolucencies were missed. We demonstrate that the deep learning algorithm achieves a better performance than 14 of 24 OMF surgeons within the cohort, exhibiting an average precision of 0.60(± 0.04), and an F1 score of 0.58(± 0.04) corresponding to a PPV of 0.67(± 0.05) and TPR of 0.51(± 0.05). The algorithm, trained on limited data and evaluated on clinically validated ground truth, has potential to assist OMF surgeons in detecting periapical lucencies on panoramic radiographs.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial intelligence
en
dc.subject
computer-assisted
en
dc.subject
image interpretation
en
dc.subject
machine learning
en
dc.subject
panoramic radiograph
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
430
dcterms.bibliographicCitation.doi
10.3390/diagnostics10060430
dcterms.bibliographicCitation.journaltitle
Diagnostics
dcterms.bibliographicCitation.originalpublishername
MDPI AG
dcterms.bibliographicCitation.volume
10
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
32599942
dcterms.isPartOf.eissn
2075-4418