dc.contributor.author
Andresen, Niek P.
dc.contributor.author
Wöllhaf, Manuel
dc.contributor.author
Hohlbaum, Katharina
dc.contributor.author
Lewejohann, Lars
dc.contributor.author
Hellwich, Olaf
dc.contributor.author
Thöne-Reineke, Christa
dc.contributor.author
Belik, Vitaly
dc.date.accessioned
2020-06-15T13:23:29Z
dc.date.available
2020-06-15T13:23:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27644
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27398
dc.description.abstract
Assessing the well-being of an animal is hindered by the limitations of efficient communication between humans and animals. Instead of direct communication, a variety of parameters are employed to evaluate the well-being of an animal. Especially in the field of biomedical research, scientifically sound tools to assess pain, suffering, and distress for experimental animals are highly demanded due to ethical and legal reasons. For mice, the most commonly used laboratory animals, a valuable tool is the Mouse Grimace Scale (MGS), a coding system for facial expressions of pain in mice. We aim to develop a fully automated system for the surveillance of post-surgical and post-anesthetic effects in mice. Our work introduces a semi-automated pipeline as a first step towards this goal. A new data set of images of black-furred laboratory mice that were moving freely is used and provided. Images were obtained after anesthesia (with isoflurane or ketamine/xylazine combination) and surgery (castration). We deploy two pre-trained state of the art deep convolutional neural network (CNN) architectures (ResNet50 and InceptionV3) and compare to a third CNN architecture without pre-training. Depending on the particular treatment, we achieve an accuracy of up to 99% for the recognition of the absence or presence of post-surgical and/or post-anesthetic effects on the facial expression.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
face recognition
en
dc.subject
general inhalational anesthesia
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.subject.ddc
500 Naturwissenschaften und Mathematik::590 Tiere (Zoologie)::590 Tiere (Zoologie)
dc.title
Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e0228059
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0228059
dcterms.bibliographicCitation.journaltitle
PLOS ONE
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1371/journal.pone.0228059
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierschutz, Tierverhalten und Versuchstierkunde

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1932-6203
refubium.resourceType.provider
WoS-Alert