dc.contributor.author
Heenemann, Maria
dc.contributor.author
Millet, Marie-Mathilde
dc.contributor.author
Girgsdies, Frank
dc.contributor.author
Eichelbaum, Maik
dc.contributor.author
Risse, Thomas
dc.contributor.author
Schlögl, Robert
dc.contributor.author
Jones, Travis
dc.contributor.author
Frei, Elias
dc.date.accessioned
2020-06-15T09:35:52Z
dc.date.available
2020-06-15T09:35:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27635
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27389
dc.description.abstract
We report on a combined quantitative charge carrier and catalytic activity analysis of Cu/ZnO(:Al) model catalysts. The promoting effect of Al3+ on the ZnO support for CO2 activation via the reverse water–gas-shift reaction has been investigated. The contact-free and operando microwave Hall Effect technique is applied to measure charge carriers in Cu/ZnO(:Al) based model catalysts under reverse water–gas shift reaction conditions. This method allows us to monitor the electrical conductivity, charge carrier mobility, and absolute number of charge carriers. An increase in charge carrier concentration with increasing Al3+ content and its direct correlation with the catalytic activity for CO formation is found. We conclude that the increased availability of charge carriers plays a key role in CO2 activation and CO formation, which finds additional support in a concurrent decrease of the apparent activation energy and increase in the reaction order of CO2. In combination with comprehensive DFT calculations, the impact of the interfacial charge transfer, coupled to oxygen defect sites in ZnO and CO2 adsorption properties, is elucidated and highlighted. In conclusion, the results from this operando investigation combined with DFT calculations demonstrate the importance of charge transfer processes as decisive descriptors for understanding and explaining catalytic properties.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
CO2 activation
en
dc.subject
Al doped Cu/ZnO
en
dc.subject
charge carrier quantification
en
dc.subject
Cu−ZnO interface
en
dc.subject
rWGS activity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
The mechanism of interfacial CO2 activation on Al doped Cu/ZnO
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acscatal.0c00574
dcterms.bibliographicCitation.journaltitle
ACS catalysis
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
5672
dcterms.bibliographicCitation.pageend
5680
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acscatal.0c00574
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie / Physikalische und Theoretische Chemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2155-5435
refubium.resourceType.provider
WoS-Alert