dc.contributor.author
Mitterwallner, Bernhard G.
dc.contributor.author
Schreiber, Christoph
dc.contributor.author
Daldrop, Jan O.
dc.contributor.author
Rädler, Joachim O.
dc.contributor.author
Netz, Roland R.
dc.date.accessioned
2020-05-13T10:19:09Z
dc.date.available
2020-05-13T10:19:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27481
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27237
dc.description.abstract
Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by thenon-Markovian version of the Langevin equation that includes an arbitrary memory function. When averagedover cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterizedby Gaussian velocity distributions. Accordingly, the data are described by a linear memory model whichincludes different random walk models that were previously used to account for various aspects of cell motilitysuch as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memoryfunction is extracted from the trajectory data without restrictions or assumptions, thus making our approachtruly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayedsingle-exponential negative friction, which clearly distinguishes cell motion from the simple persistent randomwalk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extractedmemory function we formulate a generalized exactly solvable cell migration model which indicates thatnegative friction generates cell persistence over long timescales. The nonequilibrium character of cell motionis investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model thatinvolves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.
en
dc.format.extent
18 S. (Manuskriptversion)
dc.subject
Cell migration
en
dc.subject
Nonequilibrium statistical mechanics
en
dc.subject
Random walks
en
dc.subject
Stochastic processes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Non-Markovian data-driven modeling of single-cell motility
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
032408
dcterms.bibliographicCitation.doi
10.1103/PhysRevE.101.032408
dcterms.bibliographicCitation.journaltitle
Physical Review E
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
101
dcterms.bibliographicCitation.url
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.032408
dcterms.rightsHolder.url
http://journals.aps.org/copyrightFAQ.html#post
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.funding.id
European Union’s Horizon 2020 research and innovation program, 674979-NANOTRANS; European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 835117
refubium.isSupplementedBy.url
https://refubium.fu-berlin.de/handle/fub188/27968
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2470-0053
dcterms.isPartOf.zdb
2844562-4