dc.contributor.author
Nava-Yazdani, Esfandiar
dc.contributor.author
Hege, Hans-Christian
dc.contributor.author
Sullivan, T. J.
dc.contributor.author
Tycowicz, Christoph von
dc.date.accessioned
2020-05-20T12:05:24Z
dc.date.available
2020-05-20T12:05:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/27262
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-27018
dc.description.abstract
We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall’s shape space. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and thereby reduce the computational expense by several orders of magnitude over common, nonlinear constrained approaches. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example application, we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Longitudinal modeling
en
dc.subject
Shape trajectory
en
dc.subject
Riemannian metric
en
dc.subject
Principal geodesic analysis
en
dc.subject
Geodesic regression
en
dc.subject
Parallel transport
en
dc.subject
Jacobi fields
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
Geodesic Analysis in Kendall’s Shape Space with Epidemiological Applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10851-020-00945-w
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Imaging and Vision
dcterms.bibliographicCitation.pagestart
549
dcterms.bibliographicCitation.pageend
559
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10851-020-00945-w
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-7683
dcterms.isPartOf.zdb
1479363-5