dc.contributor.author
Jacobs, Arthur M.
dc.contributor.author
Kinder, Annette
dc.date.accessioned
2020-01-30T12:38:20Z
dc.date.available
2020-01-30T12:38:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26546
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26305
dc.description.abstract
In this paper, we compute the affective-aesthetic potential (AAP) of literary texts by using a simple sentiment analysis tool called SentiArt. In contrast to other established tools, SentiArt is based on publicly available vector space models (VSMs) and requires no emotional dictionary, thus making it applicable in any language for which VSMs have been made available (>150 so far) and avoiding issues of low coverage. In a first study, the AAP values of all words of a widely used lexical databank for German were computed and the VSM’s ability in representing concrete and more abstract semantic concepts was demonstrated. In a second study, SentiArt was used to predict ~2800 human word valence ratings and shown to have a high predictive accuracy (R2 > 0.5, p < 0.0001). A third study tested the validity of SentiArt in predicting emotional states over (narrative) time using human liking ratings from reading a story. Again, the predictive accuracy was highly significant: R2adj = 0.46, p < 0.0001, establishing the SentiArt tool as a promising candidate for lexical sentiment analyses at both the micro- and macrolevels, i.e., short and long literary materials. Possibilities and limitations of lexical VSM-based sentiment analyses of diverse complex literary texts are discussed in the light of these results.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
sentiment analysis
en
dc.subject
computational poetics
en
dc.subject
affective-aesthetic potential
en
dc.subject
machine learning
en
dc.subject
digital humanities
en
dc.subject
neuroaesthetics
en
dc.subject
literary reading
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
Computing the Affective-Aesthetic Potential of Literary Texts
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3390/ai1010002
dcterms.bibliographicCitation.journaltitle
AI
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.pagestart
11
dcterms.bibliographicCitation.pageend
27
dcterms.bibliographicCitation.volume
1
dcterms.bibliographicCitation.url
https://doi.org/10.3390/ai1010002
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Allgemeine und Neurokognitive Psychologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access