dc.contributor.author
Liese, Susanne
dc.contributor.author
Gensler, Manuel
dc.contributor.author
Krysiak, Stefanie
dc.contributor.author
Schwarzl, Richard
dc.contributor.author
Achazi, Andreas Johannes
dc.contributor.author
Paulus, Beate
dc.contributor.author
Hugel, Thorsten
dc.contributor.author
Rabe, Jürgen P.
dc.contributor.author
Netz, Roland R.
dc.date.accessioned
2020-01-15T11:14:15Z
dc.date.available
2020-01-15T11:14:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/26403
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-26163
dc.description.abstract
Polyethylene glycol (PEG) is a structurally simple and nontoxic water-soluble polymer that is widely used in medical and pharmaceutical applications as molecular linker and spacer. In such applications, PEG’s elastic response against conformational deformations is key to its function. According to text-book knowledge, a polymer reacts to the stretching of its end-to-end separation by a decrease in entropy that is due to the reduction of available conformations, which is why polymers are commonly called entropic springs. By a combination of single-molecule force spectroscopy experiments with molecular dynamics simulations in explicit water, we show that entropic hydration effects almost exactly compensate the chain conformational entropy loss at high stretching. Our simulations reveal that this entropic compensation is due to the stretching-induced release of water molecules that in the relaxed state form double hydrogen bonds with PEG. As a consequence, the stretching response of PEG is predominantly of energetic, not of entropic, origin at high forces and caused by hydration effects, while PEG backbone deformations only play a minor role. These findings demonstrate the importance of hydration for the mechanics of macromolecules and constitute a case example that sheds light on the antagonistic interplay of conformational and hydration degrees of freedom.
en
dc.format.extent
32 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
polyethylene glycol
en
dc.subject
macromolecule elastic response
en
dc.subject
single-molecule force spectroscopy
en
dc.subject
molecular dynamics simulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Hydration effects turn a highly stretched polymer from an entropic into an energetic spring
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsnano.6b07071
dcterms.bibliographicCitation.journaltitle
ACS nano
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
702
dcterms.bibliographicCitation.pageend
712
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsnano.6b07071
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1936-0851
dcterms.isPartOf.eissn
1936-086X