dc.contributor.author
Bruce, Louise C.
dc.contributor.author
Adrian, Rita
dc.contributor.author
Frassl, Marieke A.
dc.contributor.author
Arhonditsis, George B.
dc.contributor.author
Gal, Gideon
dc.contributor.author
Hamilton, David P.
dc.contributor.author
Hanson, Paul C.
dc.contributor.author
Hetherington, Amy L.
dc.contributor.author
Melack, John M.
dc.contributor.author
Read, Jordan S.
dc.date.accessioned
2019-11-13T14:06:43Z
dc.date.available
2019-11-13T14:06:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25926
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25685
dc.description.abstract
The modelling community has identified challenges for the integration and assessment of lake models due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-dimensional lake model and apply it to 32 lakes from a global observatory network. The data set included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity analysis was conducted for nine parameters that governed the surface heat exchange and mixing efficiency. There was low correlation between input data uncertainty and model performance and predictions of temperature were less sensitive to model parameters than prediction of thermocline depth and Schmidt stability. The study provides guidance to where the general model approach and associated assumptions work, and cases where adjustments to model parameterisations and/or structure are required.
en
dc.format.extent
79 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
stratification
en
dc.subject
model assessment
en
dc.subject
global observatory data
en
dc.subject
network science
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::577 Ökologie
dc.title
A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.envsoft.2017.11.016
dcterms.bibliographicCitation.journaltitle
Environmental modelling & software
dcterms.bibliographicCitation.pagestart
274
dcterms.bibliographicCitation.pageend
291
dcterms.bibliographicCitation.volume
102
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.envsoft.2017.11.016
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Zoologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1873-6726