Studying neuronal circuits at cellular resolution is very challenging in vertebrates due to the size and optical turbidity of their brains. Danionella translucida, a close relative of zebrafish, was recently introduced as a model organism for investigating neural network interactions in adult individuals. Danionella remains transparent throughout its life, has the smallest known vertebrate brain and possesses a rich repertoire of complex behaviours. Here we sequenced, assembled and annotated the Danionella translucida genome employing a hybrid Illumina/Nanopore read library as well as RNA-seq of embryonic, larval and adult mRNA. We achieved high assembly continuity using low-coverage long-read data and annotated a large fraction of the transcriptome. This dataset will pave the way for molecular research and targeted genetic manipulation of this novel model organism.