dc.contributor.author
Lohmeier, Johannes
dc.contributor.author
Bohner, Georg
dc.contributor.author
Siebert, Eberhard
dc.contributor.author
Brenner, Winfried
dc.contributor.author
Hamm, Bernd
dc.contributor.author
Makowski, Marcus R.
dc.date.accessioned
2019-10-21T14:12:45Z
dc.date.available
2019-10-21T14:12:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25766
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25527
dc.description.abstract
We investigated the diagnostic potential of simultaneous 18F-FET PET/MR-imaging for differentiation between recurrent glioma and post-treatment related effects (PTRE) using quantitative volumetric (3D-VOI) lesion analysis. In this retrospective study, a total of 42 patients including 32 patients with histologically proven glioma relapse and 10 patients with PTRE (histopathologic follow-up, n = 4, serial imaging follow-up, n = 6) were evaluated regarding recurrence. PET/MR-imaging was semi-automatically analysed based on FET tracer uptake using conservative SUV thresholding (isocontour 80%) with emphasis on the metabolically most active regions. Mean (relative) apparent diffusion coefficient (ADCmean, rADCmean), standardised-uptake-value (SUV) including target-to-background (TBR) ratio were determined. Glioma relapse presented higher ADCmean (MD ± SE, 284 ± 91, p = 0.003) and TBRmax (MD ± SE, 1.10 ± 0.45, p = 0.02) values than treatment-related changes. Both ADCmean (AUC ± SE = 0.82 ± 0.07, p-value < 0.001) and TBRmax (AUC ± SE = 0.81 ± 0.08, p-value < 0.001) achieved reliable diagnostic performance in differentiating glioma recurrence from PTRE. Bivariate analysis based on a combination of ADCmean and TBRmax demonstrated highest diagnostic accuracy (AUC ± SE = 0.90 ± 0.05, p-value < 0.001), improving clinical (false negative and false positive) classification. In conclusion, biparametric analysis using DWI and FET PET, both providing distinct information regarding the underlying pathophysiology, presented best diagnostic accuracy and clinical benefit in differentiating recurrent glioma from treatment-related changes.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
recurrent glioma
en
dc.subject
post-treatment related effects
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Quantitative biparametric analysis of hybrid 18F-FET PET/MR-neuroimaging for differentiation between treatment response and recurrent glioma
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
14603
dcterms.bibliographicCitation.doi
10.1038/s41598-019-50182-4
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.originalpublishername
Nature Publishing Group
dcterms.bibliographicCitation.volume
9
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dc.relation.hascorrection
https://doi.org/10.17169/refubium-28112
dcterms.bibliographicCitation.pmid
31601829
dcterms.isPartOf.eissn
2045-2322