dc.contributor.author
Bonacum, Jason P.
dc.contributor.author
O’Hara, Andrew
dc.contributor.author
Bao, De-Liang
dc.contributor.author
Ovchinnikov, Oleg S.
dc.contributor.author
Zhang, Yan-Fang
dc.contributor.author
Gordeev, Georgy
dc.contributor.author
Arora, Sonakshi
dc.contributor.author
Reich, Stephanie
dc.contributor.author
Idrobo, Juan-Carlos
dc.contributor.author
Haglund, Richard F.
dc.contributor.author
Pantelides, Sokrates T.
dc.contributor.author
Bolotin, Kirill
dc.date.accessioned
2019-10-11T07:49:47Z
dc.date.available
2019-10-11T07:49:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25721
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25485
dc.description.abstract
Molecules intercalating two-dimensional materials form complex structures that have been characterized primarily by spatially averaged techniques. Here we use aberration-corrected scanning transmission electron microscopy and density-functional-theory (DFT) calculations to study the atomic structure of bilayer graphene (BLG) and few-layer graphene (FLG) intercalated with FeCl3. In BLG, we discover two distinct intercalated structures that we identify as monolayer FeCl3 and monolayer FeCl2. The two structures are separated by atomically sharp boundaries and induce large free-carrier densities on the order of 1013cm−2 in the graphene layers. In FLG, we observe multiple FeCl3 layers stacked in a variety of possible configurations with respect to one another. Finally, we find that the microscope's electron beam can convert the FeCl3 monolayer into FeOCl monolayers in a rectangular lattice. These results reveal the need for a combination of atomically resolved microscopy, spectroscopy, and DFT calculations to identify intercalated structures and study their properties.
en
dc.format.extent
10 Seiten
dc.subject
Structural properties
en
dc.subject
Honeycomb lattice
en
dc.subject
Density functional theory
en
dc.subject
Electron energy loss spectroscopy
en
dc.subject
Electron microscopy
en
dc.subject
Condensed Matter & Materials Physics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
064004
dcterms.bibliographicCitation.doi
10.1103/PhysRevMaterials.3.064004
dcterms.bibliographicCitation.journaltitle
Physical Review Materials
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.064004
dcterms.rightsHolder.note
Copyright des Verlages
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#post
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2475-9953