dc.contributor.author
Duan, Jifu
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Senger, Moritz
dc.contributor.author
Laun, Konstantin
dc.contributor.author
Wittkamp, Florian
dc.contributor.author
Heberle, Joachim
dc.contributor.author
Happe, Thomas
dc.contributor.author
Hofmann, Eckhard
dc.contributor.author
Apfel, Ulf-Peter
dc.contributor.author
Winkler, Martin
dc.contributor.author
Haumann, Michael
dc.contributor.author
Stripp, Sven T.
dc.date.accessioned
2019-09-11T09:41:50Z
dc.date.available
2019-09-11T09:41:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25520
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25290
dc.description.abstract
[FeFe]-hydrogenases are efficient metalloenzymes that catalyze the oxidation and evolution of molecular hydrogen, H2. They serve as a blueprint for the design of synthetic H2-forming catalysts. [FeFe]-hydrogenases harbor a six-iron cofactor that comprises a [4Fe-4S] cluster and a unique diiron site with cyanide, carbonyl, and hydride ligands. To address the ligand dynamics in catalytic turnover and upon carbon monoxide (CO) inhibition, we replaced the native aminodithiolate group of the diiron site by synthetic dithiolates, inserted into wild-type and amino acid variants of the [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. The reactivity with H2 and CO was characterized using in situ and transient infrared spectroscopy, protein crystallography, quantum chemical calculations, and kinetic simulations. All cofactor variants adopted characteristic populations of reduced species in the presence of H2 and showed significant changes in CO inhibition and reactivation kinetics. Differences were attributed to varying interactions between polar ligands and the dithiolate head group and/or the environment of the cofactor (i.e., amino acid residues and water molecules). The presented results show how catalytically relevant intermediates are stabilized by inner-sphere hydrogen bonding suggesting that the role of the aminodithiolate group must not be restricted to proton transfer. These concepts may inspire the design of improved enzymes and biomimetic H2-forming catalysts.
en
dc.format.extent
30 S. (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
metalloenzymes
en
dc.subject
cofactor dynamics
en
dc.subject
infrared spectroscopy
en
dc.subject
protein crystallography
en
dc.subject
quantum chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
The Geometry of the Catalytic Active Site in [FeFe]-hydrogenases is Determined by Hydrogen Bonding and Proton Transfer
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acscatal.9b02203
dcterms.bibliographicCitation.journaltitle
ACS Catalysis
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.pagestart
9140
dcterms.bibliographicCitation.pageend
9149
dcterms.bibliographicCitation.volume
2019
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acscatal.9b02203
refubium.affiliation
Physik
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2155-5435