dc.contributor.author
Sunkara, Vikram
dc.date.accessioned
2019-08-29T10:49:21Z
dc.date.available
2019-08-29T10:49:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25380
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4085
dc.description.abstract
The reaction counts chemical master equation (CME) is a high-dimensional variant of the classical population counts CME. In the reaction counts CME setting, we count the reactions which have fired over time rather than monitoring the population state over time. Since a reaction either fires or not, the reaction counts CME transitions are only forward stepping. Typically there are more reactions in a system than species, this results in the reaction counts CME being higher in dimension, but simpler in dynamics. In this work, we revisit the reaction counts CME framework and its key theoretical results. Then we will extend the theory by exploiting the reactions counts’ forward stepping feature, by decomposing the state space into independent continuous-time Markov chains (CTMC). We extend the reaction counts CME theory to derive analytical forms and estimates for the CTMC decomposition of the CME. This new theory gives new insights into solving hitting times-, rare events-, and a priori domain construction problems.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
chemical master equation
en
dc.subject
jump continuous-time Markov chains
en
dc.subject
reaction counts
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the Properties of the Reaction Counts Chemical Master Equation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
607
dcterms.bibliographicCitation.doi
10.3390/e21060607
dcterms.bibliographicCitation.journaltitle
Entropy
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.3390/e21060607
refubium.affiliation
Mathematik und Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1099-4300