dc.contributor.author
Bergler, Christian
dc.contributor.author
Schröter, Hendrik
dc.contributor.author
Cheng, Rachael Xi
dc.contributor.author
Barth, Volker
dc.contributor.author
Weber, Michael
dc.contributor.author
Nöth, Elmar
dc.contributor.author
Hofer, Heribert
dc.contributor.author
Maier, Andreas
dc.date.accessioned
2019-08-19T07:45:35Z
dc.date.available
2019-08-19T07:45:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25315
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4018
dc.description.abstract
Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
animal behaviour
en
dc.subject
behavioural ecology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::590 Tiere (Zoologie)::599 Mammalia (Säugetiere)
dc.title
ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
10997
dcterms.bibliographicCitation.doi
10.1038/s41598-019-47335-w
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41598-019-47335-w
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Zoo- und Wildtierforschung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2045-2322
refubium.resourceType.provider
WoS-Alert