Knowledge of spatial and temporal distribution of fluids in the subsurface is crucial in a wide range of applications. During the production of crude oil typically high saline produced formation water is injected into the reservoir layer, aiming to push the oil towards production wells. While oil is commonly seen as an electrical insulator, the injected saline brines are characterised by low electrical resistivity. Thus, electromagnetic (EM) methods and especially Controlled Source Electromagnetics (CSEM) attracted an increasing interest to monitor these resistivity changes inside the reservoir over time. This thesis mainly reports on numerical aspects of modelling and inversion of land based CSEM with particular focus towards hydrocarbon monitoring applications. Most of the presented developments were inspired by a superordinate research project including CSEM field surveys across an actively producing onshore oil field in Northern Germany. In producing oil fields there exists a large number of steel-cased wells. Such existing oil field infrastructure and especially the presence of metal casings significantly alters the propagation of EM fields in the subsurface. Their spatially unfavourable dimensions effectively prohibits a straightforward implementation into the modelling grid. Thus I developed a new modelling approach allowing consideration of such thin but vertically extended highly conductive structures including their mutual interaction. The developed methodology had been implemented into existing modelling and inversion codes. Using the new approach to investigate the influence of metal casings on CSEM data shows that they act as additional inductively coupled vertical electric dipole sources at depth and thereby increase resolution capabilities at depth. The presence of metal casings can thus be exploited by optimising the source receiver layout in such a way that the strength of these additional vertical dipole sources is maximised. An additional working package of the superordinate project was the measurement of vertical electric fields in a shallow observation well. However, measurements of vertical electric fields requires long measurement dipoles to achieve satisfactory signalto- noise ratios. Such extended dipoles span several modelling cells and are therefore in conflict with assumptions usually made for modelling, that receivers can be represented as point dipoles. I therefore expanded the modelling and inversion codes to consider the physical receiver dimensions. The new algorithm implicitly considers imperfect alignment of the receiver with the corresponding field component. Without the consideration of this effect inversion of vertical electric field measurements is likely to cause erroneous results. Finally I discuss different aspects of time-lapse inversion required to track changes in fluid saturation over time. The cascaded inversion scheme is applied to synthetic timelapse data for a simplified oilfield undergoing brine flushing. The influence of various inversion parameters in particular different regularisation techniques are examined. Surface based sources and receivers typically provide low sensitivity towards deep targets in highly conductive backgrounds. Despite that using additional constraints, in particular a model weighting scheme together with energised steel casings allowed to track resistivity changes inside the reservoir based on synthetic time-lapse data.
Wissen über räumliche und zeitliche Verteilung von Fluiden im Untergrund is unerlässlich für eine Reihe von Anwendungen. Typischerweise wird während der Förderung von Rohöl salinares produziertes Formationswasser in die ölführende Formation injiziert um das Öl-Wasser-Gemisch in Richtung der Förderbohrungen zu spülen. Während Öl als elektrischer Isolator gilt, zeichnen sich die injizierten salinaren Fluide durch eine hohe elektrische Leitfähigkeit aus. Daher erfahren elektromagnetische Methoden und insbesondere Controlled Source Electromagentics (CSEM) zunehmendes Interesse diese Änderung des elektrischen Widerstands mit der Zeit zu überwachen. Diese Arbeit beschäftigt sich im wesentlichen mit numerischen Aspekten der Modellierung und Inversion von CSEM an Land mit speziellem Fokus auf der Überwachung der Kohlenwasserstoff Produktion. Die meisten der gezeigten Entwicklungen sind entwickelt im Zuge eines übergeordneten Forschungsprojektes inklusive CSEM Feldmessungen in einem produzierenden Ölfeld in Norddeutschland. Produzierende Ölfelder sind gekennzeichnet durch eine große Anzahl von Stahl verrohrten Bohrungen. Die Anwesenheit von Stahlinfrastruktur insbesondere von Stahlschutzrohren beeinflusst die Ausbreitung von elektromagnetischen Feldern im Untergrund. Deren unvorteilhafte Geometrie erlaubt keine direkte Berücksichtigung in dem Modellierungsgitter. Daher habe ich einen neuen Modellierungsanzatz entwickelt der es erlaubt solch dünne aber vertikal ausgedehnte hochgradig leitfähige Strukturen inklusive deren gegenseitige Wechselwirkung zu berücksichtigen. Die entwickelte Methode wurde in bestehende Modellierungs- und Inversionssoftware implementiert. Mithilfe dieses neuen Ansatzes konnte der Einfluss von Stahlverrohrungen auf CSEM Daten untersucht werden. Stahlverrohrungen wirken wie zusätzliche induktiv angeregte vertikale elektrische Dipolquellen im Untergrund und helfen daher die Auflösung in der Tiefe zu erhöhen. Die Anwesenheit von Stahlverrohrungen kann daher ausgenutzt werden in dem man die Quell-Empfänger-Geometrie in einer Art und Weise optimiert, die die Stärke dieser zusätzlichen vertikalen Dipolquellen maximiert. Ein weiteres Arbeitspaket des übergeordneten Forschungsprojektes bestand in der Messung von vertikalen elektrischen Feldern in flachen Beobachtungsbohrungen. Messungen des vertikalen elektrischen Feldes erfordert lange Messdipole um ein ausreichendes Signal-Rausch-Verhältnisses zu gewährleisten. Solch ausgedehnte Dipole überspannen mehrere Zellen des Modellierungsgitters und verletzen die übliche Annahme, wonach die Länge der Empfänger vernachlässigbar ist. Daher habe ich die bestehenden Modellierungs- und Inversionsprogramme erweitert um die physischen Dimensionen von elektrischen Feld Empfängern zu berücksichtigen. Der implementierte Algorithmus berücksichtigt implizit Abweichungen der Orientierung des Messdipols von der Richtung der zu messenden Feldkomponente. Ohne dieser Berücksichtigung führt eine Inversion von vertikalen elektrischen Feld Daten zu fehlerhaften Ergebnissen. Schließlich werden unterschiedliche Aspekte von time-lapse Inversion diskutiert, welche notwendig ist um Änderungen der Fluidzusammensetzung abzubilden und zu verfolgen. Eine kaskadiertes Inversionsschema wurde auf synthetische time-lapse Daten eines vereinfachten Ölfeldes angewendet. Untersucht wurde der Einfluss verschiedener Parameter insbesondere verschiedener Regularisierungstechniken. Sender und Empfänger an der Erdoberfläche sind typischerweise wenig sensitiv zu tiefen Strukturen in leitfähiger Umgebung. Anhand von synthetische Daten konnte gezeigt werden, dass das benutzen zusätzlicher Nebenbedingungen wie einer Modellgewichtung und dem ausnutzen von vorhandenen Stahlverrohrungen es dennoch erlaubt Änderungen innerhalb des Ölreservoirs zu lokalisieren.