Free-living and (ecto)-mycorrhizal fungi enhance rock weathering. In their roles as mineral weathering agents and mutualistic partners of phototrophs, fungi supply primary producers like plants and phototrophic microorganisms with mineral-derived nutrients. The exact mechanisms behind fungus-induced mineral weathering processes are however not well understood. Progress can be achieved here by reproducible experimental simulations of the natural processes, using well-characterised model organisms and minerals.
In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes.
Three experimental systems, which generate long-term microbiological stability, were developed to study the impact of the WT and ΔKppks on olivine weathering: (1) batch and (2) mixed flow dissolution experiments, and (3) biofilm cultivation experiments. In addition, state-of-the-art analytical techniques were used to monitor changes in the growth medium, as well as of the mineral surface and biofilm-mineral interface.
Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of the Mg, Si and Fe concentrations in the reacted growth medium was used to quantify olivine dissolution. In abiotic controls, Mg and Si dissolved congruently, while Fe precipitated. The measured olivine dissolution rates at pH 6 were two orders of magnitude lower than previously reported, but similar at acidic pH. X-ray photoelectron spectroscopy (XPS) analyses of the olivine surface confirmed the presence of Fe (oxyhydr)oxide precipitates. Transmission electron microscopy (TEM) imaging of an abiotically reacted polished olivine section from the long-term cultivation experiment showed the presence of an amorphous layer enriched in Fe. All these observations indicate that the precipitation of Fe (oxyhydr)oxides on the olivine surface inhibits olivine dissolution.
Both tested rock-inhabiting fungal strains affect Fe precipitation as well as olivine dissolution. Evaluation of the WT and ΔKppks revealed that the WT formed less biomass but could take up higher amounts of metals (e.g. Fe) and was more efficient in its attachment to olivine. The WT and ΔKppks enhanced olivine dissolution as demonstrated by higher Mg and Si concentration in the reacted growth medium. They furthermore prevented Fe precipitation by binding Fe and retaining it in solution, thereby allowing olivine dissolution to proceed. The WT cells that were attached to the olivine surface were particularly efficient at inhibiting Fe precipitation. By binding Fe directly at the olivine surface, the WT cells removed the inhibition of olivine dissolution almost completely. TEM analysis of polished olivine sections, colonised by a fungal biofilm for seven months, supported this hypothesis. After long-term fungus-olivine interaction, the Fe-enriched, amorphous layer did not develop, and the olivine surface was stronger etched compared to the abiotic control.
To study the effect of mutualism on mineral weathering, K. petricola was grown with the cyanobacterium, Nostoc punctiforme ATCC 29133. Both partners showed an enhanced growth and formed a stratified biofilm which attached more strongly to olivine. Nevertheless, the olivine dissolution rate of the fungus-cyanobacterium consortium was moderate.
Rock weathering simulation systems developed here are promising research instruments. The experimental conditions allow for the alteration of the studied mineral surface, while the clear definition of these conditions delivers a stable growth of microorganisms. The latter makes these systems universally applicable, especially in combination with integrative multidisciplinary analytics. Processes underlying environmental and biological effects on rock weathering, metal corrosion, plastic degradation, or the deterioration of any other substrate can be studied reproducibly and over a long period of time. The chemical and biological complexity of these simulation systems mimics natural rock weathering processes. The mineral dissolution rates generated in this study are therefore relevant to natural ecosystems.