dc.contributor.author
Goihl, Marcel
dc.contributor.author
Friesdorf, Mathis
dc.contributor.author
Werner, Albert H.
dc.contributor.author
Brown, Winton
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2019-07-11T09:14:02Z
dc.date.available
2019-07-11T09:14:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25029
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2784
dc.description.abstract
The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, density–density correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
many-body localized (MBL)
en
dc.subject
equilibrium quantum systems
en
dc.subject
realistic models
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Experimentally Accessible Witnesses of Many-Body Localization
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.3390/quantum1010006
dcterms.bibliographicCitation.journaltitle
Quantum Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
50
dcterms.bibliographicCitation.pageend
62
dcterms.bibliographicCitation.volume
1
dcterms.bibliographicCitation.url
https://doi.org/10.3390/quantum1010006
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2624-960X